به حركت هاي رفت و برگشتي، مثل حركت آونگ، حركت نوساني مي گويند.جسم در حال نوسان را نوسانگر مي گويند. دوره يا زمان يك نوسان: در حركت نوساني به مدت زماني كه طول مي كشد تا نوسانگر يك نوسان كامل انجام مي دهد، دوره مي گوييم. دوره را با نماد T نشان داده مي شود. يكاي اندازه گيري دوره: ثانيه (S).نكته: هر چه نوسانگر تندتر نوسان كند، زمان هر نوسان آن كوتاه تر مي شود.بسامد: به تعداد نوسان هايي كه يك نوسانگر در مدت يك ثانيه انجام مي دهد، بسامد يا فركانس مي گويند.بسامد را با نماد f نشان مي دهند. يكاي اندازه گيري: هرتز (Hz)نكته: هر چه نوسانگري تندتر نوسان كند، زمان هر نوسان كم تر و بسامد آن بيش تر مي شود.رابطه ي بين دوره و بسامد: دوره و بسامد در حركت نوسان ساده، وارون يكديگرند. نكته 1: دوره ي نوسان آونگ ساده: زمان يك نوسان كامل در آونگ ساده بستگي به طول آونگ و شتاب جاذبه در محل دارد. نكته 2: دوره نوسان دستگاه وزنه – فنردوره نوسان وزنه متصل به فنر به جرم وزنه وجنس فنر و ساختمان آن بستگي دارد.   m= جرم وزنهk= ثابت فنر- ( به جنس فنر بستگي دارد )توليد موج: اگر سنگ كوچكي را در آب آرام استخر يا بركه اي بياندازد، در محل برخورد سنگ با آب، دايره اي تشكيل مي شود كه شعاع آن به تدريج افزايش يابد، به عبارت ديگر در سطح آب «تك موجي» تشكيل مي شود كه به صورت دايره به هم ي جهت ها منتشر مي شود. اقسام موج: امواج را علاوه بر دو حالت كلي مكانيكي و الكترو مغناطيسي به دو نوع طولي و عرضي نيز طبقه بندي مي شوند. 1) امواج طولي: «موجي است كه راستاي نوسان ذره هاي محيط، موازي با راستاي انتشار موج، باشد.»اگر چند حلقه از فنري را متراكم كنيم و يكبار آن را رها سازيم، مشاهده خواهيم كرد كه اين حالت تراكم در طول فنر منتشر مي شود حلقه هاي متراكم فنر پس از آزاد شدن، در اثر نيروي برگرداننده اي كه ايجاد شده منبسط مي شوند و انبساط آن ها سبب متراكم شدن تعدادي از حلقه هاي بعدي مي شود. و اين تراكم و انبساط در طول فنر منتشر مي شود.راه تشخيص موج طولي: وقتي موج طولي در فنر منتشر مي شود، حلقه هاي فنر متناوبا به يكديگر نزديك و يا از يكديگر دور مي شوند وقتي به يكديگر نزديك مي شوند، حلقه هاي متراكم شده و وقتي از يكديگر دور مي شوند حلقه ها انبساط پيدا مي كنندو«موج ها ي طولي در فنر با همين تراكم و انبساط ها قابل تشخيص است.» 2) امواج عرضي: «موجي است كه در آن امتداد ارتعاش و امتداد انتشار عمود باشد.»يك طرف ريسمان يا فنر بلندي را به ديوار مي بنديم و طرف ديگر آن را به دست مي گيريم، به طوريكه ريسمان افقي قرار گيرد اگر انتهاي ريسمان را با يك تكان سريع كمي به بالا و پايين وضع تعادل به حركت در آوريم، يك تك موج در طول ريسمان منتشر مي شود، به طوريكه هر نقطه از ريسمان پس از دريافت موج به بالا و پايين حركت مي كند.راه تشخيص موج عرضي: موج عرضي در طناب يا فنر با قله ها و دره هاي ايجاد شده قابل تشخيص است. توجه: امواج عرضي نمي توانند در گازها و مايعات منتشر شوند. چشمه ي موج: به جسمي كه در يك محيط موج ايجاد مي كند، يك چشمه ي موج مي گويند(مانند ديايازون)جابه جايي موج در يك محيط را انتشار موج مي گويند. وقتي موج در يك محيط مثلا سطح آب يا در طول فنر منتشر مي شود،به هر ذره از محيط كه مي رسد آن ذره را وادار به حركت نوساني مي كند، بدون آن كه ذره همراه موج از جايي به جاي ديگر منتقل شود. ويژگي هاي موج:  هر موج داراي چهار ويژگي است:   1- سرعت انتشار: موج در هر محيط با سرعت معيني منتشر مي شود. سرعت انتشار در يك محيط به جنس و حالت محيط و شرايط فيزيكي آن بستگي دارد. نكته: در محيطي كه شرايط فيزيكي در تمام جهات آن يكسان باشد(محيط همگن)، سرعت انتشار موج مقداري ثابت است.نماد سرعت انتشار:Vيكاي اندازه گيري: متر بر ثانيه   2- بسامد (فركانس): تعداد نوسانهايي كه نوسانگر در مدت يك ثانيه انجام مي دهد.نماد فركانس:fيكاي اندازه گيري:هرتز Hz   3- طول موج: فاصله ي هر دو برجستگي(قله ي موج) پياپي، يا فاصله ي هر دو فرورفتگي(قعر موج) پياپي را طول موج مي نامند.طول موج را با λ نشان مي دهند. يكاي اندازه گيري: متر(m)   4- دامنه موج: حداكثر فاصله اي كه مولكول ها از وضع تعادل خود مي گيرند، دامنه ي موج ناميده مي شود و معمولا با حروف A يا a نشان مي دهند.   امواج مكانيكي غيراز امواج طولي و عرضي، انواع ديگري از موج نيز دارند كه عبارتند از:1- موج پيچشي:  در موج طولي و عرضي مسير هر ذره نوساني يك خط مستقيم است. در موج پيچشي مسير هر ذره قوسي از يك دايره است. براي ايجاد يك موج پيچشي در يك فنر بايد سر فنر را به نقطه اي ثابت بسته و سر ديگر آن را در جهت عقربه هاي ساعت و خلاف آن با يك حركت نوساني منظم به چرخش در آوريم. در اين صورت همه نقاط فنر حول محور آن داراي حركت تناوبي خواهند شد و موج پيچشي در فنر منتشر مي شود. در اين حالت راستاي انتشار و ارتعاش دقيقا مشخص نيست. 2- امواج ايستاده:  اگر سيمي را به دو نقطه A و B محكم ببنديم و به آن ضربه اي بزنيم موجي ايجاد شده و پس از برخورد به مانع در خلاف جهت اول بر مي گردد و در طول سيم تعدادي گره و شكم ايجاد مي شود كه به آن موج ايستاده يا ساكن مي گوييم.مثال: امواج صوتي در تارهاي مرتعش و لوله هاي صوتي 3- امواج مسطح و كروي:امواج را مي توان، بسته به محيط انتشار آن ها، به امواج يك بعدي، دو بعدي و سه بعدي طبقه بندي كرد.در طناب و فنر، موج در بعد طولي، و بر سطح آب، موج در بعدهاي طول و عرضي و در فضا موج در سه امتداد متفاوت، انرژي منتشر مي كنند.اگر موج در فضا منتشر شود، نقاط مختلف فضا تحت تاثير انرژي امواج قرار مي گيرند. اگر شعاع هاي موج موازي باشند و موج در يك محيط همگن منتشر شود، موج مسطح خواهد بود و چنانچه موج در يك نقطه توليد شود و در محيط سه بعدي همگن انتشار يابد، شعاع هاي موج، شعاع هاي واگرا خواهند بود و موج كروي خواهيم داشت. 4- موج پلاريزه:  اگر ارتعاشات در يك راستاي ثابت صورت گيرد، به طوري كه راستاي انتشار و راستاي ارتعاش در يك صفحه ثابت قرار داشته باشد، موج را پلاريزه مي گويند.معادله ي موج: در مثلث موج انگشت خود را روي كميتي كه مي خواهيد حساب كنيد قرار دهيد و عمل رياضي باقيمانده را انجام دهيد.   مثال: يك خواننده نتي را با فركانس 256هرتز مي خواند. اگر سرعت صوت در هوا 340 متر بر ثانيه باشد، طول موج اين نت را محاسبه كنيد. پاسخ: ابتدا انگشت خود را بر روي  λ  قرار دهيد، سپس عمل رياضي باقي مانده (تقسيم) را انجام دهيد. موج و انرژي :  موج ها با خود انرژي حمل مي كنند يعني با حركت خود، انرژي را از ذره اي به ذره ي ديگر انتقال مي دهند.به عبارت ديگر، ذره هاي محيط با حركت نوساني خود، انرژي را ذره به ذره در محيط پيش مي برند. آب لرزه (سونامي):گاهي در اثر وقوع زمين لرزه در بستر اقيانوسها يا آتش فشان ها و لغزش هاي بزرگ زير دريا، امواج بسيار پر قدرتي به وجود مي آيند كه به آن آب لرزه يا سونامي (Tsunami) مي گويند. اين امواج در اثر حركت ناگهاني مقدار زيادي آب در امتداد قائم به وجود مي آيند و با سرعتي بسيار زيادتر از موج هاي سطح آب، منتشر مي شوند. موج هاي صوتي:هر صوتي داراي انرژي است و به صورت موج از چشمه هاي صوت انتشار مي يابد. موج هاي صوتي از نوع امواج طولي هستند.موج صوتي را بايد توسط يك جسم مرتعش توليد كرد. به هرجسمي كه صوت توليد مي كند، چشمه صوت مي گويند.حنجره انسان يك چشمه ي صوت است. با عبور دادن هوا از حنجره، تارهاي صوتي آن را به ارتعاش در مي آورد. وارتعاش تارهاي صوتي صوت را به وجود مي آورد. در واقع ارتعاش تارهاي صوتي به مولكولهاي هوا انرژي منتقل مي كند و موج صوتي توليد مي شود. نكته: سرعت صوت در جامدها بيش تر از مايعات و در مايعات بيش تر از گازهاست، هر چه ماده متراكم تر باشد، سرعت صوت در آن بيش تر است. در مواد جامد مولكول ها نسبت به گازها به يكديگر نزديك ترند و در نتيجه سرعت صوت در آن ها بيش تر است. موج هاي صوتي را برحسب بسامد آن ها به سه گروه تقسيم مي كنند. 1- صوت:  به موج هاي صوتي كه بسامد آن ها در حدود 20 تا 20000 نوسان در ثانيه باشد، صوت مي گويند.براي آنكه صوتي روي گوش انسان اثر بگذارد و شنيده شود، بايد بسامد آن در اين محدوده باشد، به اين محدوده، محدوده ي شنوايي انسان گفته مي شود. 2- فرو صوت: صوت هايي كه بسامد آن ها كم تر از 20 هرتز باشد، فروصوت گفته مي شود. 3- فرا صوت:  صوت هايي كه بسامد آن ها از 20000هرتز بيش تر باشد، فراصوت گفته مي شود.كاربردهاي فراصوت:1- امروزه فرا صوت و استفاده آن در صنعت پزشكي اهميت بسيار دارد. به عنوان مثال در پزشكي از فراصوت براي بررسي جنين در بدن مادر و اطلاع از وضعيت و اطمينان از سلامتي آن استفاده مي شود.2- از فراصوت در جستجوي تومورها و ديگر عوامل غير طبيعي حفره شكمي و بررسي قلب استفاده       مي شود.3- امواج فرا صوت مي توانند دستگاههاي پزشكي و دندانپزشكي را تميز كنند.4- از يك باريكه ي پر انرژي فراصوت براي بريدن بافتهاي بدن استفاده مي شود.   در صنعت: يك باريكه ي فراصوت مي تواند شكاف هاي ظريف (باريك) فلزات، آسفالت جاده ها يا لاستيك را آشكار سازد. زمين شناسان باريكه اي از امواج فراصوت را به درون زمين مي فرستند و با بررسي پژواك ها، مي توانند به نوع سنگ ها و مواد كاني زير زميني پي ببرند. همچنين مي توانند با مطالعه پژواك هاي فراصوت، در مورد احتمال وجود نفت در لايه هاي زير زمين نظر بدهند. امواج الكترو مغناطيسي:نوعي از امواج كه مي توانند در خلا منتشر شوند و نياز به محيط مادي ندارند را موج الكترو مغناطيسي    مي نامند.موج هاي الكترو مغناطيسي از بسامد هاي بسيار بالا(طول موج بسيار كوتاه كه پرتوهاي گاما نام دارند) تا بسامدهاي بسياركم (طول موج هاي بسيار بلند كه امواج راديويي نام دارند) را شامل مي شوند. تفاوت موج هاي الكترو مغناطيسي و موج هاي صوتي:1- سرعت موج هاي صوتي در هوا در دماي معمولي حدود 340 متر برثانيه است در حالي كه سرعت انتشار موج هاي الكترومغناطيسي در هوا حدود 000/000/300 متر بر ثانيه است.2- امواج صوتي براي انتشار نياز به محيط مادي دارند در حاليكه امواج الكترو مغناطيسي از خلا نيز         مي گذرند.3- امواج صوتي از نوع امواج طولي و امواج الكترومغناطيسي از نوع عرضي هستند.   شباهت موج هاي الكترومغناطيسي و موج هاي صوتي: هر دو با خود انرژي حمل مي كنند.   نكته: موج هاي الكترومغناطيسي را بر حسب بسامد و كاربرد آن ها نامگذاري مي كنند.جدول زير انواع موج هاي الكترومغناطيس را از موج هاي بسيار كوتاه تا موج متوسط نشان مي دهد. به اين گستره، طيف الكترو مغناطيسي مي گويند.   نكته: موج هاي الكترو مغناطيس در اين طيف برحسب طول موج مرتب شده اند.           + نوشته شده در  دهم بهمن 1390ساعت 12:35  توسط احسان ستایش  |  نظر بدهید فیزیک دوم راهنمایی         موج- فصل 3   فيزيك فصل 3 - موج آونگ درحال نوسان به حركت هاي رفت و برگشتي، مثل حركت آونگ، حركت نوساني مي گويند.جسم در حال نوسان را نوسانگر مي گويند. دوره يا زمان يك نوسان: در حركت نوساني به مدت زماني كه طول مي كشد تا نوسانگر يك نوسان كامل انجام مي دهد، دوره مي گوييم. دوره را با نماد T نشان داده مي شود. يكاي اندازه گيري دوره: ثانيه (S).نكته: هر چه نوسانگر تندتر نوسان كند، زمان هر نوسان آن كوتاه تر مي شود.بسامد: به تعداد نوسان هايي كه يك نوسانگر در مدت يك ثانيه انجام مي دهد، بسامد يا فركانس مي گويند.بسامد را با نماد f نشان مي دهند. يكاي اندازه گيري: هرتز (Hz)نكته: هر چه نوسانگري تندتر نوسان كند، زمان هر نوسان كم تر و بسامد آن بيش تر مي شود.رابطه ي بين دوره و بسامد: دوره و بسامد در حركت نوسان ساده، وارون يكديگرند. نكته 1: دوره ي نوسان آونگ ساده: زمان يك نوسان كامل در آونگ ساده بستگي به طول آونگ و شتاب جاذبه در محل دارد. نكته 2: دوره نوسان دستگاه وزنه – فنردوره نوسان وزنه متصل به فنر به جرم وزنه وجنس فنر و ساختمان آن بستگي دارد.   m= جرم وزنهk= ثابت فنر- ( به جنس فنر بستگي دارد )توليد موج: اگر سنگ كوچكي را در آب آرام استخر يا بركه اي بياندازد، در محل برخورد سنگ با آب، دايره اي تشكيل مي شود كه شعاع آن به تدريج افزايش يابد، به عبارت ديگر در سطح آب «تك موجي» تشكيل مي شود كه به صورت دايره به هم ي جهت ها منتشر مي شود. اقسام موج: امواج را علاوه بر دو حالت كلي مكانيكي و الكترو مغناطيسي به دو نوع طولي و عرضي نيز طبقه بندي مي شوند. 1) امواج طولي: «موجي است كه راستاي نوسان ذره هاي محيط، موازي با راستاي انتشار موج، باشد.»اگر چند حلقه از فنري را متراكم كنيم و يكبار آن را رها سازيم، مشاهده خواهيم كرد كه اين حالت تراكم در طول فنر منتشر مي شود حلقه هاي متراكم فنر پس از آزاد شدن، در اثر نيروي برگرداننده اي كه ايجاد شده منبسط مي شوند و انبساط آن ها سبب متراكم شدن تعدادي از حلقه هاي بعدي مي شود. و اين تراكم و انبساط در طول فنر منتشر مي شود.راه تشخيص موج طولي: وقتي موج طولي در فنر منتشر مي شود، حلقه هاي فنر متناوبا به يكديگر نزديك و يا از يكديگر دور مي شوند وقتي به يكديگر نزديك مي شوند، حلقه هاي متراكم شده و وقتي از يكديگر دور مي شوند حلقه ها انبساط پيدا مي كنندو«موج ها ي طولي در فنر با همين تراكم و انبساط ها قابل تشخيص است.» 2) امواج عرضي: «موجي است كه در آن امتداد ارتعاش و امتداد انتشار عمود باشد.»يك طرف ريسمان يا فنر بلندي را به ديوار مي بنديم و طرف ديگر آن را به دست مي گيريم، به طوريكه ريسمان افقي قرار گيرد اگر انتهاي ريسمان را با يك تكان سريع كمي به بالا و پايين وضع تعادل به حركت در آوريم، يك تك موج در طول ريسمان منتشر مي شود، به طوريكه هر نقطه از ريسمان پس از دريافت موج به بالا و پايين حركت مي كند.راه تشخيص موج عرضي: موج عرضي در طناب يا فنر با قله ها و دره هاي ايجاد شده قابل تشخيص است. توجه: امواج عرضي نمي توانند در گازها و مايعات منتشر شوند. چشمه ي موج: به جسمي كه در يك محيط موج ايجاد مي كند، يك چشمه ي موج مي گويند(مانند ديايازون)جابه جايي موج در يك محيط را انتشار موج مي گويند. وقتي موج در يك محيط مثلا سطح آب يا در طول فنر منتشر مي شود،به هر ذره از محيط كه مي رسد آن ذره را وادار به حركت نوساني مي كند، بدون آن كه ذره همراه موج از جايي به جاي ديگر منتقل شود. ويژگي هاي موج:  هر موج داراي چهار ويژگي است:   1- سرعت انتشار: موج در هر محيط با سرعت معيني منتشر مي شود. سرعت انتشار در يك محيط به جنس و حالت محيط و شرايط فيزيكي آن بستگي دارد. نكته: در محيطي كه شرايط فيزيكي در تمام جهات آن يكسان باشد(محيط همگن)، سرعت انتشار موج مقداري ثابت است.نماد سرعت انتشار:Vيكاي اندازه گيري: متر بر ثانيه   2- بسامد (فركانس): تعداد نوسانهايي كه نوسانگر در مدت يك ثانيه انجام مي دهد.نماد فركانس:fيكاي اندازه گيري:هرتز Hz   3- طول موج: فاصله ي هر دو برجستگي(قله ي موج) پياپي، يا فاصله ي هر دو فرورفتگي(قعر موج) پياپي را طول موج مي نامند.طول موج را با λ نشان مي دهند. يكاي اندازه گيري: متر(m)   4- دامنه موج: حداكثر فاصله اي كه مولكول ها از وضع تعادل خود مي گيرند، دامنه ي موج ناميده مي شود و معمولا با حروف A يا a نشان مي دهند.   امواج مكانيكي غيراز امواج طولي و عرضي، انواع ديگري از موج نيز دارند كه عبارتند از:1- موج پيچشي:  در موج طولي و عرضي مسير هر ذره نوساني يك خط مستقيم است. در موج پيچشي مسير هر ذره قوسي از يك دايره است. براي ايجاد يك موج پيچشي در يك فنر بايد سر فنر را به نقطه اي ثابت بسته و سر ديگر آن را در جهت عقربه هاي ساعت و خلاف آن با يك حركت نوساني منظم به چرخش در آوريم. در اين صورت همه نقاط فنر حول محور آن داراي حركت تناوبي خواهند شد و موج پيچشي در فنر منتشر مي شود. در اين حالت راستاي انتشار و ارتعاش دقيقا مشخص نيست. 2- امواج ايستاده:  اگر سيمي را به دو نقطه A و B محكم ببنديم و به آن ضربه اي بزنيم موجي ايجاد شده و پس از برخورد به مانع در خلاف جهت اول بر مي گردد و در طول سيم تعدادي گره و شكم ايجاد مي شود كه به آن موج ايستاده يا ساكن مي گوييم.مثال: امواج صوتي در تارهاي مرتعش و لوله هاي صوتي 3- امواج مسطح و كروي:امواج را مي توان، بسته به محيط انتشار آن ها، به امواج يك بعدي، دو بعدي و سه بعدي طبقه بندي كرد.در طناب و فنر، موج در بعد طولي، و بر سطح آب، موج در بعدهاي طول و عرضي و در فضا موج در سه امتداد متفاوت، انرژي منتشر مي كنند.اگر موج در فضا منتشر شود، نقاط مختلف فضا تحت تاثير انرژي امواج قرار مي گيرند. اگر شعاع هاي موج موازي باشند و موج در يك محيط همگن منتشر شود، موج مسطح خواهد بود و چنانچه موج در يك نقطه توليد شود و در محيط سه بعدي همگن انتشار يابد، شعاع هاي موج، شعاع هاي واگرا خواهند بود و موج كروي خواهيم داشت. 4- موج پلاريزه:  اگر ارتعاشات در يك راستاي ثابت صورت گيرد، به طوري كه راستاي انتشار و راستاي ارتعاش در يك صفحه ثابت قرار داشته باشد، موج را پلاريزه مي گويند.معادله ي موج: در مثلث موج انگشت خود را روي كميتي كه مي خواهيد حساب كنيد قرار دهيد و عمل رياضي باقيمانده را انجام دهيد.   مثال: يك خواننده نتي را با فركانس 256هرتز مي خواند. اگر سرعت صوت در هوا 340 متر بر ثانيه باشد، طول موج اين نت را محاسبه كنيد. پاسخ: ابتدا انگشت خود را بر روي  λ  قرار دهيد، سپس عمل رياضي باقي مانده (تقسيم) را انجام دهيد. موج و انرژي :  موج ها با خود انرژي حمل مي كنند يعني با حركت خود، انرژي را از ذره اي به ذره ي ديگر انتقال مي دهند.به عبارت ديگر، ذره هاي محيط با حركت نوساني خود، انرژي را ذره به ذره در محيط پيش مي برند. آب لرزه (سونامي):گاهي در اثر وقوع زمين لرزه در بستر اقيانوسها يا آتش فشان ها و لغزش هاي بزرگ زير دريا، امواج بسيار پر قدرتي به وجود مي آيند كه به آن آب لرزه يا سونامي (Tsunami) مي گويند. اين امواج در اثر حركت ناگهاني مقدار زيادي آب در امتداد قائم به وجود مي آيند و با سرعتي بسيار زيادتر از موج هاي سطح آب، منتشر مي شوند. موج هاي صوتي:هر صوتي داراي انرژي است و به صورت موج از چشمه هاي صوت انتشار مي يابد. موج هاي صوتي از نوع امواج طولي هستند.موج صوتي را بايد توسط يك جسم مرتعش توليد كرد. به هرجسمي كه صوت توليد مي كند، چشمه صوت مي گويند.حنجره انسان يك چشمه ي صوت است. با عبور دادن هوا از حنجره، تارهاي صوتي آن را به ارتعاش در مي آورد. وارتعاش تارهاي صوتي صوت را به وجود مي آورد. در واقع ارتعاش تارهاي صوتي به مولكولهاي هوا انرژي منتقل مي كند و موج صوتي توليد مي شود. نكته: سرعت صوت در جامدها بيش تر از مايعات و در مايعات بيش تر از گازهاست، هر چه ماده متراكم تر باشد، سرعت صوت در آن بيش تر است. در مواد جامد مولكول ها نسبت به گازها به يكديگر نزديك ترند و در نتيجه سرعت صوت در آن ها بيش تر است. موج هاي صوتي را برحسب بسامد آن ها به سه گروه تقسيم مي كنند. 1- صوت:  به موج هاي صوتي كه بسامد آن ها در حدود 20 تا 20000 نوسان در ثانيه باشد، صوت مي گويند.براي آنكه صوتي روي گوش انسان اثر بگذارد و شنيده شود، بايد بسامد آن در اين محدوده باشد، به اين محدوده، محدوده ي شنوايي انسان گفته مي شود. 2- فرو صوت: صوت هايي كه بسامد آن ها كم تر از 20 هرتز باشد، فروصوت گفته مي شود. 3- فرا صوت:  صوت هايي كه بسامد آن ها از 20000هرتز بيش تر باشد، فراصوت گفته مي شود.كاربردهاي فراصوت:1- امروزه فرا صوت و استفاده آن در صنعت پزشكي اهميت بسيار دارد. به عنوان مثال در پزشكي از فراصوت براي بررسي جنين در بدن مادر و اطلاع از وضعيت و اطمينان از سلامتي آن استفاده مي شود.2- از فراصوت در جستجوي تومورها و ديگر عوامل غير طبيعي حفره شكمي و بررسي قلب استفاده       مي شود.3- امواج فرا صوت مي توانند دستگاههاي پزشكي و دندانپزشكي را تميز كنند.4- از يك باريكه ي پر انرژي فراصوت براي بريدن بافتهاي بدن استفاده مي شود.   در صنعت: يك باريكه ي فراصوت مي تواند شكاف هاي ظريف (باريك) فلزات، آسفالت جاده ها يا لاستيك را آشكار سازد. زمين شناسان باريكه اي از امواج فراصوت را به درون زمين مي فرستند و با بررسي پژواك ها، مي توانند به نوع سنگ ها و مواد كاني زير زميني پي ببرند. همچنين مي توانند با مطالعه پژواك هاي فراصوت، در مورد احتمال وجود نفت در لايه هاي زير زمين نظر بدهند. امواج الكترو مغناطيسي:نوعي از امواج كه مي توانند در خلا منتشر شوند و نياز به محيط مادي ندارند را موج الكترو مغناطيسي    مي نامند.موج هاي الكترو مغناطيسي از بسامد هاي بسيار بالا(طول موج بسيار كوتاه كه پرتوهاي گاما نام دارند) تا بسامدهاي بسياركم (طول موج هاي بسيار بلند كه امواج راديويي نام دارند) را شامل مي شوند. تفاوت موج هاي الكترو مغناطيسي و موج هاي صوتي:1- سرعت موج هاي صوتي در هوا در دماي معمولي حدود 340 متر برثانيه است در حالي كه سرعت انتشار موج هاي الكترومغناطيسي در هوا حدود 000/000/300 متر بر ثانيه است.2- امواج صوتي براي انتشار نياز به محيط مادي دارند در حاليكه امواج الكترو مغناطيسي از خلا نيز         مي گذرند.3- امواج صوتي از نوع امواج طولي و امواج الكترومغناطيسي از نوع عرضي هستند.   شباهت موج هاي الكترومغناطيسي و موج هاي صوتي: هر دو با خود انرژي حمل مي كنند.   نكته: موج هاي الكترومغناطيسي را بر حسب بسامد و كاربرد آن ها نامگذاري مي كنند.جدول زير انواع موج هاي الكترومغناطيس را از موج هاي بسيار كوتاه تا موج متوسط نشان مي دهد. به اين گستره، طيف الكترو مغناطيسي مي گويند.   نكته: موج هاي الكترو مغناطيس در اين طيف برحسب طول موج مرتب شده اند.     Top of Form Bottom of Form       + نوشته شده در  نهم بهمن 1390ساعت 18:47  توسط احسان ستایش  |  نظر بدهید فرمول های فیزیکی محتوای دوره درسی     ور صورتي از انرژي تابشي است كه با سرعت 300000 كيلومتر بر ثانيه درفضا سير مي كند.فرايند نور:1- موجب ديدن اجسام مي شود.2- موجب عمل غذاسازي گياهان مي شود.3- باعث كاركردن كليه وسايل نوري مي شود. 4- موجب تغيير رنگ لباس و پارچه مي شود.براي آنكه جسمي ديده شود، بايد از آن جسم نور به چشم برسد، بنابر اين جسم يا بايد از خودش نور تابش كند و يا نورهايي را كه برآن تابيده شده است، به طرف چشم بيننده بازتاب دهد.به همين دليل اجسام به دو دسته تقسيم مي شوند.1- اجسام منير يا چشمه ي نور: اجسامي كه از خود نور توليد مي كنند. مانند خورشيد، لامپ روشن، شمع روشن، چوب در حال سوختن2- اجسام غير منير: اين اجسام از خود نوري تابش نمي كنند، بلكه نوري را كه از چشمه هاي نور به آن ها تابيده است به طرف چشم، باز مي گردانند، در نتيجه ما مي توانيم آن ها را ببينيم.انواع چشمه ي نور:1- چشمه ي گسترده نور: يك شي نوراني نظير خورشيد، چراغ روشن، شعله ي شمع را چشمه ي نور گسترده مي ناميم.   2- چشمه نور نقطه اي: اگر صفحه اي از مقوا را كه روي آن روزنه ي كوچكي ايجاد شده است، درمقابل چراغ روشني قراردهيم، نور چراغ پس از گذشتن از روزنه منتشر مي شود و روزنه مانند يك چشمه نور كوچك عمل مي كند كه به آن چشمه ي نقطه اي نور مي گويند. تقسيم بندي اجسام غير منير از نظر عبور نور از آنها:1- اجسام شفاف : اجسامي كه نور از آن ها عبور مي كند مانند شيشه – هوا – آب 2- اجسام نيمه شفاف : اجسامي كه نور از آن ها عبور مي كند ولي از پشت آن ها اجسام ديگر به طور واضح ديده نمي شوند. مانند شيشه هاي مات – كاغذ كالك3- اجسام كدر اجسامي كه نور از آن ها عبور نمي كند.مانند آجر-مقوا-چوب و ....نور به خط راست منتشر مي شود.چند دليل مهم براي اثبات اين موضوع:1- عبور نور از لابه لاي شاخ و برگ درختان 2- تشكيل سايه - خورشيد گرفتگي4- ماه گرفتگيسايه چگونه تشكيل مي شود؟ اگر جسم كدري در مقابل منبع نوري قرار گيرد در پشت جسم محوطه ي تاريكي بوجود مي آيد كه به آن سايه مي گويند.   راههاي تشكيل سايه : 1- تشكيل سايه به وسيله چشمه ي نقطه اي نور: در اين حالت فقط سايه كامل ايجاد مي شود و مرز مشخصي بين تاريكي و روشنايي وجود دارد.نكته: قطر سايه به فاصله ي چشمه ي نور تا جسم كدر و پرده بستگي دارد.نكته: هر گاه چشمه ي نور به جسم كدر نزديك شود قطر سايه بزرگتر مي شود و هرگاه چشمه ي نور را از جسم كدر دور كنيم قطر سايه كوچك تر مي شود. هر گاه سايه به وسيله ي چشمه ي نقطه اي تشكيل شود بين قطر سايه و قطر جسم كدر رابطه ي زير وجود دارد.   مثال : جسمي به طول 10CM در فاصله ي 5CM از يك منبع نقطه اي نور قراردارد. اگر فاصله ي پرده تا منبع نور 60CM باشد، در اين صورت طول سايه چقدر است؟ AB=10CMOH=5CM OH'=60CM ?=A'B'   2- تشكيل سايه به وسيله چشمه ي گسترده نور: در اين حالت علاوه بر سايه كامل، نيم سايه نيز ديده مي شود.      - خورشيد گرفتگي (كسوف): هر گاه در چرخش ماه به دور زمين و هر دو به دور خورشيد، مركز آن سه (ماه،زمين،خورشيد) روي يك خط راست واقع شود به طوري كه ماه در وسط باشد، ماه جلوي نور خورشيد را مي گيرد و سايه آن روي زمين مي افتد در نتيجه كساني كه در سايه ي ماه قرار دارند خورشيد را تاريك مي بينند. در اين صورت مي گوييم، خورشيد گرفتگي رخ داده است.     - ماه گرفتگي: اگر زمين بين ماه و خورشيد قرار گيرد، زمين جلوي نور خورشيد را مي گيرد و سايه آن روي ماه مي افتد و آن را تاريك مي كند. در اين صورت مي گوييم ماه گرفتگي رخ داده است.    بازتاب نور :  برگشت نور از سطح يك جسم را بازتاب مي گويند. انواع بازتاب نور:1- بازتاب منظم: اين بازتابش در سطوح بسيار صاف صورت مي گيرد. در اين صورت پرتوهاي نور به طور موازي به سطح تابيده و به طور موازي در يك جهت بازتاب مي شوند. در اين نوع بازتاب همواره تصويري واضح و روشن ايجاد مي شود. مانند آينه     2- بازتاب نامنظم: هرگاه يك دسته پرتو موازي نور به سطح ناهمواري برخورد كند به صورت پرتوهاي غير موازي و در جهات متفاوت بازتاب مي شوند. دراين نوع بازتابش تصوير اشياء مبهم و نامشخص است.     اصل انعكاس: در بازتاب نور از سطح يك جسم، همواره زاويه تابش و بازتاب برابرند. نكته 1: پرتو تابش: پرتو نوري كه به سطح مي تابد.(I)نكته2: پرتو بازتابش: پرتو بازگشته از سطح را مي گويند.(R)نكته3: زاويه تابش: زاويه بين پرتو تابش و خط عمود را مي گويند.(i)نكته4: زاويه بازتابش: زاويه بين پرتو بازتاب و خط عمود را گويند.(r)نكته5: زاويه آلفا α : زاويه بين پرتو تابش و سطح آينه را گويند.نكته6: زاويه بتا α : زوايه بين پرتو بازتاب و سطح آينه را گويند.نكته7: زاويه تابش متمم زاويه α است. يعني نكته8: زاويه باز تابش متمم زاويه  β  است. يعني انواع دسته اشعه (پرتو) نوراني:1- دسته پرتو موازي: اين پرتوها همانطور كه از اسمشان پيدا است با هم موازي هستند. 2- دسته پرتو همگرا: پرتوهايي هستند كه در آن شعاع هاي نور در جهت انتشار به هم نزديك مي شوند و در يك نقطه به هم مي رسند. 3- دسته پرتو واگرا: پرتوهايي كه در آن شعاع هاي نور در جهت انتشار از هم دور مي شوند. پرتوهاي حقيقي: پرتوهاي تابش و بازتابش كه به چشم مي رسند را پرتوهاي حقيقي مي گويند. پرتوهاي مجازي: امتداد پرتوهاي واگرايي كه از سطح آينه بازتاب مي شوند(در پشت آينه) پرتوهاي مجازي گفته مي شود. تصوير حقيقي:  زماني تشكيل مي شود كه پرتوهاي تابش شده از يك نقطه شي پس از برخورد به آينه يا عدسي در نقطه اي ديگر به هم برسند. تصوير حقيقي بر روي پرده تشكيل مي شود. تصوير مجازي:  تصويري كه پرتوهاي مجازي در پشت آينه به وجود مي آورند را مي گويند.تصوير مجازي بر روي پرده تشكيل نمي شود. آينه: قطعات شيشه اي كه پشت آنها نقره اندود يا جيوه اندود شده است و مي توانند نور را بازتاب دهند بازتاب از سطح آينه منظم است. ويژگي هاي تصوير در آينه تخت 1- تصوير مجازي 2- تصوير مستقيم3- تصوير برگردان(وارون جانبي)4- طول تصوير با طول جسم برابر است.5- فاصله تصوير تا آينه با فاصله ي جسم تا آينه برابر است.   كاربرد آينه ي تخت:1- استفاده از تصوير مستقيم آن در خانه و وسايل نقليه 2- استفاده از آينه براي ارسال علايم مخابراتي به فاصله دور 3- استفاده از آينه ي تخت براي اندازه گيري سرعت نور و وسايل نور بازتابي (تلسكوپ بازتابي)4- پريسكوپ: اين دستگاه از لوله اي تشكيل شده كه در دو طرف آن دو آينه ي تخت موازي نصب شده كه هر يك از اين آينه ها با محور آينه زوايه 45 درجه مي سازد. هر تصويري كه در يكي از اين آينه ها ديده مي شود در ديگري نيز مشاهده مي شود. انتقال آينه ي تخت:  هرگاه جسمي در برابر آينه ي تختي قرار گيرد، تصوير مجازي آن در آينه ديده مي شود. چنانچه آينه به اندازه d جابه جا شود. تصوير به اندازه 2d نسبت به جسم جابه جا مي شود. اگر آينه ثابت باشد و جسم به اندازه d نسبت به آينه جا به جا شود تصوير نسبت به جسم به اندازه d جا به جا مي شود. سرعت انتقال تصوير:  سرعت انتقال تصوير در آينه ي تخت در حالتي كه آينه ثابت باشد و جسم با سرعت V در راستاي عمود بر سطح آينه حركت كند، نسبت به مكان اوليه اش برابر V است.در حالي كه جسم ساكن باشد و آينه در راستاي عمود بر سطح آينه با سرعت V حركت كند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 2V خواهد بود.در حالي كه جسم و آينه هر يك با سرعت V به طرف هم حركت كنند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 3Vخواهد بود. تصوير در آينه هاي متقاطع:  هر گاه جسم روشني در فضاي بين دو آينه ي متقاطع قرار گيرد پرتوهايي از جسم به هر يك از دو آينه مي تابد و دو تصوير مجازي به وجود مي آورد. اگر پرتوها پس از باز تابش هاي متوالي به آينه برخورد كنند تصويرهاي ديگري نمايان مي شود. هر چه زاويه بين دوآينه α كوچكتر باشد تعداد اين تصويرها بيش تر است. تعداد تصويرها (n) از رابطه ي زير به دست مي آيد. نكته: در حالتي كه دو آينه موازي باشند 0=α تعداد تصاوير بي نهايت زياد است.   آينه هاي كروي: الف) آينه مقعر(كاو): اگر سطح داخلي آينه بازتاب كننده باشد، به آن آينه كاو مي گويند.نكته 1: اگر يك دسته پرتو نور موازي به آينه كاو بتابد پرتوهاي بازتابيده در يك نقطه به نام كانون حقيقي به هم مي رسند.كانون با حرف F نمايش داده مي شود.به فاصله كانون تا آينه، فاصله كانوني مي گويند و با حرف f نمايش مي دهند. نكته2: آينه هاي كاو مي توانند از يك جسم هم تصوير مجازي و هم تصوير حقيقي ايجاد كنند.تشكيل تصوير حقيقي يا مجازي، بستگي به فاصله جسم از آينه هاي كاو دارد. هر چه جسم به آينه نزديك تر باشد، تصوير در فاصله اي دورتر ايجاد مي شود و هرچه جسم را از آينه دور كنيم تصوير به آينه نزديك تر مي شود.ب) آينه ي كوژ: اگر سطح خارجي آينه بازتاب كننده باشد، آن را آينه ي كوژ مي گويند.نكته1: هرگاه پرتوهاي نور موازي محور اصلي به آينه محدب بتابد، طوري باز مي تابد كه امتداد پرتوهاي بازتاب از يك نقطه روي محور اصلي مي گذرند. اين نقطه را كانون اصلي آينه ي محدب مي نامند. كانون آينه محدب مجازي است. نكته 2: تصوير در آينه ي محدب همواره مجازي، كوچك تر از جسم و مستقيم خواهد بود. شكست نور:وقتي نور به جسمي مي تابد، مقداري از آن نور بازتاب مي شود، مقداري نيز از جسم عبور مي كند،اما جسم هاي شفاف مانند هوا، آب، شيشه، طلق هاي پلاستيكي شفاف نور را به خوبي از خود عبور مي دهند. نور در يك محيط معين در مسير مستقيم حركت مي كند.اگر در مسير نور يك قطعه جسم شفاف عمود در مسير نور قرار گيرد، مسير نور در هنگام عبور از جسم هم چنان مستقيم خواهد بود. اما اگر نور در مسير خود، با زوايه اي ديگر به يك جسم شفاف (مثلا شيشه) برخورد كند، هنگام ورود به شيشه مسير حركتش مقداري كج مي شود. به اين پديده شكست نور مي گويند. نور در يك محيط معين، به صورت مستقيم و با سرعت ثابت حركت مي كند، هرگاه محيط تغيير كند، سرعت نور نيز تغيير كرده و نور منحرف مي شود و در مسير جديد به خط راست حركت مي كند.تغيير مسير پرتو نور به هنگام عبور از يك محيط شفاف به محيط شفاف ديگر را شكست نور مي گويند. زاويه تابش: زاويه اي بين پرتو تابش و خط عمود (i)زاويه شكست: زاويه اي بين پرتو شكست و خط عمود (r) رابطه ي زاويه تابش و زاويه ي شكست:1- اگر پرتو تابش عمود بر سطح مشترك بين دو محيط باشد،(يعني زاويه آن با خط عمود برابر صفر باشد) در اين صورت نور بدون شكست وارد محيط دوم شده و منحرف نمي شود. 2- اگر پرتو تابش از محيط رقيق وارد محيط غليظ شود در اين حالت پرتو شكست به خط عمود نزديك مي شود يعني زاويه شكست از زاويه ي تابش كوچك تر مي شود. 3- اگر پرتو تابش از محيط غليظ وارد محيط رقيق شود، در اين حالت پرتو شكست از خط عمود دورتر مي شود و زاويه ي شكست از زاويه ي تابش بزرگ تر مي شود. علت شكست نور:علت شكست نور، متفاوت بودن سرعت نور در محيط هاي مختلف است. سرعت نور در خلا يا هوا در حدود است اما وقتيكه وارد آب مي شود، سرعت آن به حدود كيلومتر بر ثانيه مي رسد. سرعت نور در شيشه(كه غليظ تر از آب است) كم تر و در حدود  است. اين تفاوت سرعت نور سبب مي شود كه راستاي پرتوهاي نور هنگام عبور از يك محيط به محيط ديگر، شكسته شود و پديده شكست نور اتفاق بيفتد. عمق ظاهري، عمق واقعي:هنگامي كه از هوا به جسمي در داخل آب نگاه كنيم آن جسم به سطح آب نزديكتر و وقتي از داخل آب به جسمي در هوا نگاه كنيم، دورتر به نظر مي رسد. وقتي نور به طور مايل از يك محيط شفاف وارد محيط شفاف ديگر مي شود، در مرز مشترك دو محيط، تغيير مي دهد(شكسته مي شود) همين عامل سبب بالاتر ديده شدن جسم نسبت به سطح واقعي گردد. منشور:قطعه اي مثلثي شكل است كه از يك ماده شفاف مثل شيشه يا پلاستيك هاي بي رنگ ساخته مي شود. وقتي پرتوهاي نور به يكي از ديواره هاي منشور برخورد مي كند و به آن وارد مي شود، در اثر پديده ي شكست مسيرش تغيير مي كند. اين پرتو هنگام خروج از ديواره ي ديگر منشور نيز، دچار تغيير مي شود. آزمايش نيوتن:هرگاه شعاع نور سفيدي بر يك وجه منشور شيشه اي كه قاعده ي آن به شكل مثلث است بتابانيم، نور سفيد تجزيه شده و پرتوهاي خروجي از منشور بر روي پرده طيف رنگيني از هفت رنگ قرمز، نارنجي، زرد، سبز، آبي، نيلي و بنفش را تشكيل مي دهد. علت اين پديده آن است كه ميزان شكست نورهاي رنگي مختلف، با هم يكسان نيست.  هرگاه نور سفيد وارد منشور شود،  تغيير مسير رنگ هاي  تشكيل  دهنده ي نور سفيد از قرمز تا بنفش بيش تر شده و به هنگام خروج از منشور رنگ هاي مختلف نور سفيد از يكديگر جدا مي شوند.جداسازي رنگ هاي نور سفيد به وسيله ي منشور را پاشيدگي نور (پاشيده شدن) مي گويند.   به مجموعه نورهاي رنگي كه از پاشيده شدن نور در منشور به وجود مي آيد طيف نور گفته مي شود.عدسي ها: اگر دو منشور را مطابق شكل هاي مقابل به هم بچسبانيم و سطح آن ها را به صورت خميده تراش دهيم، عدسي به وجود مي آيد. عدسي ها مانند منشور مي تواند جهت پرتوهاي نور را تغيير دهد، همين امر سبب مي شود اجسام از پشت عدسي به صورتهاي مختلف ديده شوند.انواع عدسي:1- عدسي همگرا(محدب يا كوژ) ضخامت وسط اين عدسي بيش تر از ضخامت كناره هاي آن است.اين نوع عدسي پرتوهاي نور موازي را شكسته و در يك نقطه متمركز مي كند يا به عبارت ديگر پرتوهاي نور را به يكديگر نزديك مي كند.2- عدسي واگرا (مقعر يا كاو) ضخامت وسط اين عدسي كم تر از ضخامت كناره هاي آن است.اين نوع عدسي پرتوهاي نور موازي را شكسته و آنها را واگرا مي نمايد به عبارت ديگر پرتوهاي نور را از يكديگر دور مي كند.   عدسي همگرا: اين نقطه كانون عدسي(ذره بين)است. اگر فاصله ي بين عدسي تا صفحه ي كاغذ را اندازه بگيريد، اين فاصله را فاصله كانوني عدسي گويند.هرگاه يك دسته پرتو نور موازي با محور اصلي به عدسي همگرا بتابد پس از عبور از عدسي شكسته شده و پرتوها در يك نقطه يكديگر را قطع مي كنند. اين نقطه كانون اصلي عدسي بوده و با F نمايش داده مي شود. فاصله ي بين كانون و مركز نوري عدسي را فاصله ي كانوني عدسي مي گويند و با علامت (f) نمايش مي دهند.نكته: عدسي هاي همگرا هم تصوير حقيقي و هم تصوير مجازي ايجاد مي كنند.ويژگي هاي تصوير در عدسي همگرا بستگي به فاصله شي از عدسي و فاصله ي كانوني دارد. عدسي واگرا:  هر گاه پرتوهايي موازي محور اصلي به عدسي واگرا بتابد پس از شكست و عبور از عدسي طوري از هم دور مي شوند كه امتداد آن ها از يك نقطه روي محور اصلي بگذرند. اين نقطه را كانون عدسي واگرا مي نامند.نكته: عدسي ها واگرا همواره تصويري مجازي، مستقيم، كوچك تر از جسم و نزديك تر(در همان طرف شي) ايجاد مي كند.   + نوشته شده در  هشتم بهمن 1390ساعت 21:16  توسط احسان ستایش  |  نظر بدهید درک فیزیک ور صورتي از انرژي تابشي است كه با سرعت 300000 كيلومتر بر ثانيه درفضا سير مي كند.فرايند نور:1- موجب ديدن اجسام مي شود.2- موجب عمل غذاسازي گياهان مي شود.3- باعث كاركردن كليه وسايل نوري مي شود. 4- موجب تغيير رنگ لباس و پارچه مي شود.براي آنكه جسمي ديده شود، بايد از آن جسم نور به چشم برسد، بنابر اين جسم يا بايد از خودش نور تابش كند و يا نورهايي را كه برآن تابيده شده است، به طرف چشم بيننده بازتاب دهد.به همين دليل اجسام به دو دسته تقسيم مي شوند.1- اجسام منير يا چشمه ي نور: اجسامي كه از خود نور توليد مي كنند. مانند خورشيد، لامپ روشن، شمع روشن، چوب در حال سوختن2- اجسام غير منير: اين اجسام از خود نوري تابش نمي كنند، بلكه نوري را كه از چشمه هاي نور به آن ها تابيده است به طرف چشم، باز مي گردانند، در نتيجه ما مي توانيم آن ها را ببينيم.انواع چشمه ي نور:1- چشمه ي گسترده نور: يك شي نوراني نظير خورشيد، چراغ روشن، شعله ي شمع را چشمه ي نور گسترده مي ناميم.   2- چشمه نور نقطه اي: اگر صفحه اي از مقوا را كه روي آن روزنه ي كوچكي ايجاد شده است، درمقابل چراغ روشني قراردهيم، نور چراغ پس از گذشتن از روزنه منتشر مي شود و روزنه مانند يك چشمه نور كوچك عمل مي كند كه به آن چشمه ي نقطه اي نور مي گويند. تقسيم بندي اجسام غير منير از نظر عبور نور از آنها:1- اجسام شفاف : اجسامي كه نور از آن ها عبور مي كند مانند شيشه – هوا – آب 2- اجسام نيمه شفاف : اجسامي كه نور از آن ها عبور مي كند ولي از پشت آن ها اجسام ديگر به طور واضح ديده نمي شوند. مانند شيشه هاي مات – كاغذ كالك3- اجسام كدر اجسامي كه نور از آن ها عبور نمي كند.مانند آجر-مقوا-چوب و ....نور به خط راست منتشر مي شود.چند دليل مهم براي اثبات اين موضوع:1- عبور نور از لابه لاي شاخ و برگ درختان 2- تشكيل سايه - خورشيد گرفتگي4- ماه گرفتگيسايه چگونه تشكيل مي شود؟ اگر جسم كدري در مقابل منبع نوري قرار گيرد در پشت جسم محوطه ي تاريكي بوجود مي آيد كه به آن سايه مي گويند.   راههاي تشكيل سايه : 1- تشكيل سايه به وسيله چشمه ي نقطه اي نور: در اين حالت فقط سايه كامل ايجاد مي شود و مرز مشخصي بين تاريكي و روشنايي وجود دارد.نكته: قطر سايه به فاصله ي چشمه ي نور تا جسم كدر و پرده بستگي دارد.نكته: هر گاه چشمه ي نور به جسم كدر نزديك شود قطر سايه بزرگتر مي شود و هرگاه چشمه ي نور را از جسم كدر دور كنيم قطر سايه كوچك تر مي شود. هر گاه سايه به وسيله ي چشمه ي نقطه اي تشكيل شود بين قطر سايه و قطر جسم كدر رابطه ي زير وجود دارد.   مثال : جسمي به طول 10CM در فاصله ي 5CM از يك منبع نقطه اي نور قراردارد. اگر فاصله ي پرده تا منبع نور 60CM باشد، در اين صورت طول سايه چقدر است؟ AB=10CMOH=5CM OH\'=60CM ?=A\'B\'   2- تشكيل سايه به وسيله چشمه ي گسترده نور: در اين حالت علاوه بر سايه كامل، نيم سايه نيز ديده مي شود.      - خورشيد گرفتگي (كسوف): هر گاه در چرخش ماه به دور زمين و هر دو به دور خورشيد، مركز آن سه (ماه،زمين،خورشيد) روي يك خط راست واقع شود به طوري كه ماه در وسط باشد، ماه جلوي نور خورشيد را مي گيرد و سايه آن روي زمين مي افتد در نتيجه كساني كه در سايه ي ماه قرار دارند خورشيد را تاريك مي بينند. در اين صورت مي گوييم، خورشيد گرفتگي رخ داده است.     - ماه گرفتگي: اگر زمين بين ماه و خورشيد قرار گيرد، زمين جلوي نور خورشيد را مي گيرد و سايه آن روي ماه مي افتد و آن را تاريك مي كند. در اين صورت مي گوييم ماه گرفتگي رخ داده است.    بازتاب نور :  برگشت نور از سطح يك جسم را بازتاب مي گويند. انواع بازتاب نور:1- بازتاب منظم: اين بازتابش در سطوح بسيار صاف صورت مي گيرد. در اين صورت پرتوهاي نور به طور موازي به سطح تابيده و به طور موازي در يك جهت بازتاب مي شوند. در اين نوع بازتاب همواره تصويري واضح و روشن ايجاد مي شود. مانند آينه     2- بازتاب نامنظم: هرگاه يك دسته پرتو موازي نور به سطح ناهمواري برخورد كند به صورت پرتوهاي غير موازي و در جهات متفاوت بازتاب مي شوند. دراين نوع بازتابش تصوير اشياء مبهم و نامشخص است.     اصل انعكاس: در بازتاب نور از سطح يك جسم، همواره زاويه تابش و بازتاب برابرند. نكته 1: پرتو تابش: پرتو نوري كه به سطح مي تابد.(I)نكته2: پرتو بازتابش: پرتو بازگشته از سطح را مي گويند.(R)نكته3: زاويه تابش: زاويه بين پرتو تابش و خط عمود را مي گويند.(i)نكته4: زاويه بازتابش: زاويه بين پرتو بازتاب و خط عمود را گويند.(r)نكته5: زاويه آلفا α : زاويه بين پرتو تابش و سطح آينه را گويند.نكته6: زاويه بتا α : زوايه بين پرتو بازتاب و سطح آينه را گويند.نكته7: زاويه تابش متمم زاويه α است. يعني نكته8: زاويه باز تابش متمم زاويه  β  است. يعني انواع دسته اشعه (پرتو) نوراني:1- دسته پرتو موازي: اين پرتوها همانطور كه از اسمشان پيدا است با هم موازي هستند. 2- دسته پرتو همگرا: پرتوهايي هستند كه در آن شعاع هاي نور در جهت انتشار به هم نزديك مي شوند و در يك نقطه به هم مي رسند. 3- دسته پرتو واگرا: پرتوهايي كه در آن شعاع هاي نور در جهت انتشار از هم دور مي شوند. پرتوهاي حقيقي: پرتوهاي تابش و بازتابش كه به چشم مي رسند را پرتوهاي حقيقي مي گويند. پرتوهاي مجازي: امتداد پرتوهاي واگرايي كه از سطح آينه بازتاب مي شوند(در پشت آينه) پرتوهاي مجازي گفته مي شود. تصوير حقيقي:  زماني تشكيل مي شود كه پرتوهاي تابش شده از يك نقطه شي پس از برخورد به آينه يا عدسي در نقطه اي ديگر به هم برسند. تصوير حقيقي بر روي پرده تشكيل مي شود. تصوير مجازي:  تصويري كه پرتوهاي مجازي در پشت آينه به وجود مي آورند را مي گويند.تصوير مجازي بر روي پرده تشكيل نمي شود. آينه: قطعات شيشه اي كه پشت آنها نقره اندود يا جيوه اندود شده است و مي توانند نور را بازتاب دهند بازتاب از سطح آينه منظم است. ويژگي هاي تصوير در آينه تخت 1- تصوير مجازي 2- تصوير مستقيم3- تصوير برگردان(وارون جانبي)4- طول تصوير با طول جسم برابر است.5- فاصله تصوير تا آينه با فاصله ي جسم تا آينه برابر است.   كاربرد آينه ي تخت:1- استفاده از تصوير مستقيم آن در خانه و وسايل نقليه 2- استفاده از آينه براي ارسال علايم مخابراتي به فاصله دور 3- استفاده از آينه ي تخت براي اندازه گيري سرعت نور و وسايل نور بازتابي (تلسكوپ بازتابي)4- پريسكوپ: اين دستگاه از لوله اي تشكيل شده كه در دو طرف آن دو آينه ي تخت موازي نصب شده كه هر يك از اين آينه ها با محور آينه زوايه 45 درجه مي سازد. هر تصويري كه در يكي از اين آينه ها ديده مي شود در ديگري نيز مشاهده مي شود. انتقال آينه ي تخت:  هرگاه جسمي در برابر آينه ي تختي قرار گيرد، تصوير مجازي آن در آينه ديده مي شود. چنانچه آينه به اندازه d جابه جا شود. تصوير به اندازه 2d نسبت به جسم جابه جا مي شود. اگر آينه ثابت باشد و جسم به اندازه d نسبت به آينه جا به جا شود تصوير نسبت به جسم به اندازه d جا به جا مي شود. سرعت انتقال تصوير:  سرعت انتقال تصوير در آينه ي تخت در حالتي كه آينه ثابت باشد و جسم با سرعت V در راستاي عمود بر سطح آينه حركت كند، نسبت به مكان اوليه اش برابر V است.در حالي كه جسم ساكن باشد و آينه در راستاي عمود بر سطح آينه با سرعت V حركت كند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 2V خواهد بود.در حالي كه جسم و آينه هر يك با سرعت V به طرف هم حركت كنند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 3Vخواهد بود. تصوير در آينه هاي متقاطع:  هر گاه جسم روشني در فضاي بين دو آينه ي متقاطع قرار گيرد پرتوهايي از جسم به هر يك از دو آينه مي تابد و دو تصوير مجازي به وجود مي آورد. اگر پرتوها پس از باز تابش هاي متوالي به آينه برخورد كنند تصويرهاي ديگري نمايان مي شود. هر چه زاويه بين دوآينه α كوچكتر باشد تعداد اين تصويرها بيش تر است. تعداد تصويرها (n) از رابطه ي زير به دست مي آيد. نكته: در حالتي كه دو آينه موازي باشند 0=α تعداد تصاوير بي نهايت زياد است.   آينه هاي كروي: الف) آينه مقعر(كاو): اگر سطح داخلي آينه بازتاب كننده باشد، به آن آينه كاو مي گويند.نكته 1: اگر يك دسته پرتو نور موازي به آينه كاو بتابد پرتوهاي بازتابيده در يك نقطه به نام كانون حقيقي به هم مي رسند.كانون با حرف F نمايش داده مي شود.به فاصله كانون تا آينه، فاصله كانوني مي گويند و با حرف f نمايش مي دهند. نكته2: آينه هاي كاو مي توانند از يك جسم هم تصوير مجازي و هم تصوير حقيقي ايجاد كنند.تشكيل تصوير حقيقي يا مجازي، بستگي به فاصله جسم از آينه هاي كاو دارد. هر چه جسم به آينه نزديك تر باشد، تصوير در فاصله اي دورتر ايجاد مي شود و هرچه جسم را از آينه دور كنيم تصوير به آينه نزديك تر مي شود.ب) آينه ي كوژ: اگر سطح خارجي آينه بازتاب كننده باشد، آن را آينه ي كوژ مي گويند.نكته1: هرگاه پرتوهاي نور موازي محور اصلي به آينه محدب بتابد، طوري باز مي تابد كه امتداد پرتوهاي بازتاب از يك نقطه روي محور اصلي مي گذرند. اين نقطه را كانون اصلي آينه ي محدب مي نامند. كانون آينه محدب مجازي است. نكته 2: تصوير در آينه ي محدب همواره مجازي، كوچك تر از جسم و مستقيم خواهد بود. شكست نور:وقتي نور به جسمي مي تابد، مقداري از آن نور بازتاب مي شود، مقداري نيز از جسم عبور مي كند،اما جسم هاي شفاف مانند هوا، آب، شيشه، طلق هاي پلاستيكي شفاف نور را به خوبي از خود عبور مي دهند. نور در يك محيط معين در مسير مستقيم حركت مي كند.اگر در مسير نور يك قطعه جسم شفاف عمود در مسير نور قرار گيرد، مسير نور در هنگام عبور از جسم هم چنان مستقيم خواهد بود. اما اگر نور در مسير خود، با زوايه اي ديگر به يك جسم شفاف (مثلا شيشه) برخورد كند، هنگام ورود به شيشه مسير حركتش مقداري كج مي شود. به اين پديده شكست نور مي گويند. نور در يك محيط معين، به صورت مستقيم و با سرعت ثابت حركت مي كند، هرگاه محيط تغيير كند، سرعت نور نيز تغيير كرده و نور منحرف مي شود و در مسير جديد به خط راست حركت مي كند.تغيير مسير پرتو نور به هنگام عبور از يك محيط شفاف به محيط شفاف ديگر را شكست نور مي گويند. زاويه تابش: زاويه اي بين پرتو تابش و خط عمود (i)زاويه شكست: زاويه اي بين پرتو شكست و خط عمود (r) رابطه ي زاويه تابش و زاويه ي شكست:1- اگر پرتو تابش عمود بر سطح مشترك بين دو محيط باشد،(يعني زاويه آن با خط عمود برابر صفر باشد) در اين صورت نور بدون شكست وارد محيط دوم شده و منحرف نمي شود. 2- اگر پرتو تابش از محيط رقيق وارد محيط غليظ شود در اين حالت پرتو شكست به خط عمود نزديك مي شود يعني زاويه شكست از زاويه ي تابش كوچك تر مي شود. 3- اگر پرتو تابش از محيط غليظ وارد محيط رقيق شود، در اين حالت پرتو شكست از خط عمود دورتر مي شود و زاويه ي شكست از زاويه ي تابش بزرگ تر مي شود. علت شكست نور:علت شكست نور، متفاوت بودن سرعت نور در محيط هاي مختلف است. سرعت نور در خلا يا هوا در حدود است اما وقتيكه وارد آب مي شود، سرعت آن به حدود كيلومتر بر ثانيه مي رسد. سرعت نور در شيشه(كه غليظ تر از آب است) كم تر و در حدود  است. اين تفاوت سرعت نور سبب مي شود كه راستاي پرتوهاي نور هنگام عبور از يك محيط به محيط ديگر، شكسته شود و پديده شكست نور اتفاق بيفتد. عمق ظاهري، عمق واقعي:هنگامي كه از هوا به جسمي در داخل آب نگاه كنيم آن جسم به سطح آب نزديكتر و وقتي از داخل آب به جسمي در هوا نگاه كنيم، دورتر به نظر مي رسد. وقتي نور به طور مايل از يك محيط شفاف وارد محيط شفاف ديگر مي شود، در مرز مشترك دو محيط، تغيير مي دهد(شكسته مي شود) همين عامل سبب بالاتر ديده شدن جسم نسبت به سطح واقعي گردد. منشور:قطعه اي مثلثي شكل است كه از يك ماده شفاف مثل شيشه يا پلاستيك هاي بي رنگ ساخته مي شود. وقتي پرتوهاي نور به يكي از ديواره هاي منشور برخورد مي كند و به آن وارد مي شود، در اثر پديده ي شكست مسيرش تغيير مي كند. اين پرتو هنگام خروج از ديواره ي ديگر منشور نيز، دچار تغيير مي شود. آزمايش نيوتن:هرگاه شعاع نور سفيدي بر يك وجه منشور شيشه اي كه قاعده ي آن به شكل مثلث است بتابانيم، نور سفيد تجزيه شده و پرتوهاي خروجي از منشور بر روي پرده طيف رنگيني از هفت رنگ قرمز، نارنجي، زرد، سبز، آبي، نيلي و بنفش را تشكيل مي دهد. علت اين پديده آن است كه ميزان شكست نورهاي رنگي مختلف، با هم يكسان نيست.  هرگاه نور سفيد وارد منشور شود،  تغيير مسير رنگ هاي  تشكيل  دهنده ي نور سفيد از قرمز تا بنفش بيش تر شده و به هنگام خروج از منشور رنگ هاي مختلف نور سفيد از يكديگر جدا مي شوند.جداسازي رنگ هاي نور سفيد به وسيله ي منشور را پاشيدگي نور (پاشيده شدن) مي گويند.   به مجموعه نورهاي رنگي كه از پاشيده شدن نور در منشور به وجود مي آيد طيف نور گفته مي شود.عدسي ها: اگر دو منشور را مطابق شكل هاي مقابل به هم بچسبانيم و سطح آن ها را به صورت خميده تراش دهيم، عدسي به وجود مي آيد. عدسي ها مانند منشور مي تواند جهت پرتوهاي نور را تغيير دهد، همين امر سبب مي شود اجسام از پشت عدسي به صورتهاي مختلف ديده شوند.انواع عدسي:1- عدسي همگرا(محدب يا كوژ) ضخامت وسط اين عدسي بيش تر از ضخامت كناره هاي آن است.اين نوع عدسي پرتوهاي نور موازي را شكسته و در يك نقطه متمركز مي كند يا به عبارت ديگر پرتوهاي نور را به يكديگر نزديك مي كند.2- عدسي واگرا (مقعر يا كاو) ضخامت وسط اين عدسي كم تر از ضخامت كناره هاي آن است.اين نوع عدسي پرتوهاي نور موازي را شكسته و آنها را واگرا مي نمايد به عبارت ديگر پرتوهاي نور را از يكديگر دور مي كند.   عدسي همگرا: اين نقطه كانون عدسي(ذره بين)است. اگر فاصله ي بين عدسي تا صفحه ي كاغذ را اندازه بگيريد، اين فاصله را فاصله كانوني عدسي گويند.هرگاه يك دسته پرتو نور موازي با محور اصلي به عدسي همگرا بتابد پس از عبور از عدسي شكسته شده و پرتوها در يك نقطه يكديگر را قطع مي كنند. اين نقطه كانون اصلي عدسي بوده و با F نمايش داده مي شود. فاصله ي بين كانون و مركز نوري عدسي را فاصله ي كانوني عدسي مي گويند و با علامت (f) نمايش مي دهند.نكته: عدسي هاي همگرا هم تصوير حقيقي و هم تصوير مجازي ايجاد مي كنند.ويژگي هاي تصوير در عدسي همگرا بستگي به فاصله شي از عدسي و فاصله ي كانوني دارد. عدسي واگرا:  هر گاه پرتوهايي موازي محور اصلي به عدسي واگرا بتابد پس از شكست و عبور از عدسي طوري از هم دور مي شوند كه امتداد آن ها از يك نقطه روي محور اصلي بگذرند. اين نقطه را كانون عدسي واگرا مي نامند.نكته: عدسي ها واگرا همواره تصويري مجازي، مستقيم، كوچك تر از جسم و نزديك تر(در همان طرف شي) ايجاد مي كند. كار، انرژي و توان   وقتی به جسم ساکن نیرو وارد شود, ممکن است جسم در جهتی که نیرو بر آن وارد می شود به حرکت درآید. در این صورت می گوییم نیرو روی جسم کار انجام داده است. کاروقتی انجام می شود که نیروی نقطه اثر خود را جابه جا کند.   توجه: هر چه نیرو یا جابه جایی بزرگتر باشد, کار انجام شده بیش تر است.       در این گونه مثال ها نیرو و جابه جایی در یک جهت هستند, بنابر این مقدار کار از رابطه ی زیر به دست   می آید. جابه جایی × نیرو = کار W=F.d گاهی ممکن است نیروی وارد شده و جابه جایی در یک راستا نباشند. در این صورت مولفه ای از نیرو کار انجام می دهد که در راستای جابه جایی باشد. در شكل مقابل فرد به وسيله طنابي كه با سطح افق زاويه Θ (تتا) مي سازد جسم را روي سطح افقي مي كشد. در این شکل نیروی F نیروی فرد و Θ زاویه بین نیروی F نسبت به راستای جابه جایی است.   دراين صورت نيروي F به دو نيروي FsinΘا (F سينوس تتا) و FcosΘ (اF كسينوس تتا) تجزيه مي شود. مولفهFcos Θ ا  مولفه نیرو در راستای جابه جایی است. در این حالت مقدار کار برابر است با: W= F cosΘ . d   با توجه به مطالب بالا, کار را می توان از رابطه کلی زیر به دست آورد: W= F . d . cosΘ   در اين رابطه زاويه بين راستاي نيور و جابه جايي (Θ) بر حسب درجه، نيرو (F) بر حسب نيوتن (N)، جابه جايي (d) بر حسب متر (m) بر حسب نيوتن متر يا ژول (j) است. در جدول زیر مقدار سینوس و کسینوس چند زاویه که کاربرد بیش تری دارند آورده شده است.   180 90 60 45 30 0 زاويه (بر حسب درجه)ا 0 1 0 Sin -1 0 1 Cos     توجه: فقط در هنگام به حرکت در آوردن اجسام ساکن کار انجام نمي شود. بلکه اگر نیرویی بر یک جسم متحرک نیز وارد شود ممکن است سرعت یا جهت حرکت جسم, در جهت وارد شدن نیرو, تغییر کند. در چنین حالتی هم کار انجام می شود. در موارد زیر کار انجام نمی شود: 1) بر یک جسم نیرو وارد شود ولی جسم حرکت نکند   2) اگر جسمی در حال حرکت باشد ولی به آن نیرویی وارد نشود.   مثال: فضا پیماها در فضاهای دور دست بدون آنکه هیچ نیرویی جلو حرکت آن ها را بگیرد. بدون هیچ اصطکاکی در فضای بی کران در حال حرکت هستند. در چنین حالتی, چون هیچ نیرویی سبب کند شدن حرکت جسم نمی شود. جسم هم چنان با سرعتی ثابت در جهتی معین به حرکت خود ادامه می دهد در این حالت اگر چه جسم در حال حرکت است اما کاری انجام نمی شود.   3) گاهی نیرویی بر یک جسم وارد می شود اما جسم در جهت وارد شدن نیرو حرکت نمی کند در این صورت اگر نیرو بر راستای جا به جایی عمود باشد (Cos90=0) نیروی وارد شده کار انجام نمی دهد.   به طور مثال: فردی جعبه ای را در دست دارد و آن را در جهت افقی حرکت می دهد. در این حالت فرد دو نیرو وارد می کند.     1- F۱ : نیرویی برابر نیروی وزن جسم اما در جهت بالا به منظور نگه داشتن جسم و جلوگیری از افتادن آن بر روی زمین به جسم وارد می شود این نیرو کاری انجام نمی دهد, چون در جهت وارد شدن آن, جسم جابه جا نمی شود. 2- F۲ :  نیرویی به صورت افقی به منظور به حرکت در آوردن جسم به طرف جلو این نیرو چون در راستای جابه جایی است پس کار انجام می دهد.   مثال 1: شخصی روی دسته یک جاروبرقی نیروی 25 نیوتن در امتدادی که با افق زاویه 60 درجه می سازد, وارد می کند و آن را در سطح افقی 10 متر جا به جا می کند. کار نیروی F چقدر است؟     مثال 2 : جسمی به جرم ۵ kg را به اندازه ۵۰Cm از سطح زمین بالا می بریم. کار نیروی وزن چقدر است ؟   d= ۵۰ cm= ۰/۵ m W= mg= ۵×۱۰=۵۰ N وزن جسم W= F . d . cosΘ         W= ۵۰×۰/۵×(-۱) = -۲۵ j   نکته: هرگاه نیرو و جابه جایی هم راستا و در خلاف جهت باشند ( ) کار انجام شده منفی است. W = -F . d   کار و انرژی: انرژی و کار کاملا به هم مربوطند, به طوریکه می توان گفت: هرگاه کاری انجام شود ممکن است حالت های زیر برای انرژی پیش آید: 1)هنگام انجام کار, انرژی از صورت یا نوعی به صورت یا نوع دیگر تبدیل می شود.   2) هنگام انجام کار, انرژی از یک جسم به جسم دیگر انتقال یابد.   انرژی: توانایی انجام کار است.   نکته: انرژی و کار ارتباط بسیار نزدیکی به یکدیگر دارند. به طوریکه می توان گفت هرگاه کاری انجام می شود. حتما انجام کار با تبدیل انرژی همراه است و یا انرژی از جسمی به جسم دیگر انتقال یافته است. هم چنین, هرگاه جسمی دارای انرژی باشد می توان در صورت ایجاد شرایط مناسب به کمک آن انرژی جسمی را به حرکت درآورد.   توان سرعت انجام کار یا سرعت مصرف انرژی است. به عبارت دیگر, توان نشان دهنده ی میزان کار انجام شده یا انرژی مصرف شده در واحد زمان است.   مقدار توان به دو عامل بستگی دارد: 1- مقدار کار انجام شده (یا مقدار انرژی مصرف شده) در یک زمان مشخص, هر چه مقدار کار انجام شده بیش تر باشد, مقدار توان بیش تر است. یعنی توان با مقدار کار انجام شده رابطه ی مستقیم دارد.   2-مدت زمان انجام کار: توان با مدت زمان انجام کار رابطه عکس دارد. یعنی هر چه مدت زمان مصرف شده برای انجام کاری کم تر باشد. توان بیش تر است.   سرعت انجام کار به وسیله دونده ای که مسابقه را زودتر طی کند, بیش تر است. به عبارت دیگر توان این دونده از دونده ی دیگر بیش تر است. برای محاسبه توان از رابطه ی زیر استفاده می کنیم:   در این معادله مقدار کار انجام شده (w) بر حسب ژول (Jj) و مقدار زمان انجام کار (t) برحسب ثانیه (S) و توان (P) برحسب وات (W) است.   نکته 1: یک وات توان ماشینی است که در مدت یک ثانیه, یک ژول کار انجام می دهد. نکته 2: هر کیلو وات برابر هزار وات است 1000w=ا1kw نكته 3: هر قوه ي اسب بخار برابر 746 وات است. 1hp=746W معادله هاي دیگری نیز برای محاسبه توان وجود دارد؛ که از معادله اصلی به دست می آید. می دانیم که سرعت مقدار مسافت طی شده در واحد زمان است       نکته: وقتی می گوییم توان یک لامپ برقی 100 وات است یعنی در هر ثانیه 100 ژول انرژی الکتریکی توسط لامپ مصرف شده و مطابق قانون پا بستگی انرژی 100 ژول انرژی تابشی (نور) و گرمایی به وسیله آن تولید می شود.   مثال: ماشيني در مدت 3 دقیقه باری به وزن 1800 نیوتن را تا ارتفاع 20 متری انتقال می دهد. توان ماشین چند کیلووات است؟ F = ۱۸۰۰ N d = ۲۰ m t = ۳ min = ۱۸۰ s P = ? برای تبدیل وات به کیلو وات عدد مورد نظر را بر 1000 تقسیم می کنیم.پس   ماشین هر اسبابی که به طریقی سبب آسان شدن کار گردد ماشین نامیده می شود. ماشین ها به صورت های گوناگون در انجام کارها به ما کمک می کنند.   1) ماشین ها گاهی باعث تغییر محل وارد شدن نیرو به جسم و گاهی نیز باعث تغییر جهت نیرو           می شوند. قرقره ی بالای پرچم, دوچرخه, قیچی همه از راه تغییر جهت نیرو به ما کمک می کنند.     2) ماشین ها گاهی با افزایش مقدار نیرو به ما کمک می کنند. (مانند دیلم, انبردست, در قوطی بازکن)       3)گاهی ماشین ها با افزایش مسافت اثر نیرو بر جسم و افزایش سرعت انجام کار ماشین ها به ما کمک می کنند. (جارو فراشی, انبر, موچین, یخ گیرو...)     یک ماشین می تواند در یک زمان هم افزایش نیرو و هم تغییر جهت نیرو داشته باشد مانند جک اتومبیل و یا در یک زمان هم جهت نیرو را عوض کند و هم مسافت اثر نیرو را زیاد کند مانند دوچرخه ولی هرگز نمی تواند در یک زمان هم مقدار نیرو و هم مسافت اثر نیرو را افزایش دهد, زیرا در این صورت کارگرفته شده از ماشین بیش تر از کارداده شده به آن خواهد بود که البته چنین چیزی غیرممکن است.   کارداده شده و کارگرفته شده از ماشین برای آنکه یک ماشین کار انجام دهد, باید نخست بر روی آن کار انجام دهیم, نیرویی که به این منظور به ماشین وارد می شود, نيروي محرک و کار این نیرو را کار نیروی محرک (کار داده شده) می نامند. برای اندازه گیری این کار, کافی است نیرویی که به ماشین وارد می شود در طولی که طی می کند ضرب شود. جابه جایی نیروی محرک×نیروی محرک=کار نیروی محرک (کار داده شده) WE = E . dE   نیرویی را که ماشین باید بر آن غلبه کند, نیروی مقاوم و کار این نیرو, کار نیروی مقاوم (کار مفید) نامیده می شود برای محاسبه کار مفید, نیروی مقاومی که بر آن غلبه شده است در جابه جایی آن ضرب می کنیم. جابه جایی نیروی مقاوم×نیروی مقاوم=کار نیروی مقاوم(کار مفید) WR = R . dR   معمولا کار غیرمفید ماشین را نمی توان به طور مستقیم اندازه گرفت و برای تعیین آن کار مفیدی را که از ماشین گرفته ایم از کاری که به ماشین داده ایم, کم می کنیم. کارمفید-کار داده شده=کار غیر مفید   برای مطالعه ماشین آن ها را به دو دسته تقسیم می کنند. 1- ماشین های کامل (ایده آل): این نوع ماشین, ماشین خیالی است که همه کار داده شده را به صورت مطلوب ما صرف غلبه بر نیروی مقاوم می کند. در چنین ماشینی اتلاف انرژی وجود ندارد و کار نیروی محرک با کار نیروی مقاوم برابر است.   2-ماشین های واقعی ماشین هایی هستند که در عمل با آن ها سر و کار داریم . در همه ماشین ها, بخشی از کار نیروی محرک صرف غلبه بر نیروهای مقاوم ناخواسته (اغلب اصطکاک) می شودو در نتیجه کار نیروی مقاوم همواره کمتر از نیروی محرک است. توجه: در ماشین های واقعی نیز همیشه کاری که به ماشین داده می شود با کل کاری که از ماشین گرفته می شود برابر است. اما تمام کار گرفته شده از ماشین به صورت مطلوب نیست. کارگرفته شده = کار داده شده کارغیر مفید+کار مفید= کار داده شده   مطابق قانون پابستگی انرژی, انرژی هنگام تبدیل شدن از یک صورت به صورت دیگر و یا انتقال از یک جسم به جسم دیگر خلق و نابود نمی شود. انواع ماشين ها 1- ماشین های ساده: گروهی از ماشین ها که پایه و اساس ساخت ماشین های دیگر را تشکیل می دهند, ماشین ساده نامیده می شوند. ماشین های ساده در شش نوع اهرم, قرقره, چرخ محور, سطح شیب دار گوه و پیچ دسته بندی می شوند.   2- ماشین های مرکب یا پیچیده گاهی دو یا چند ماشین ساده با هم ترکیب می شوند و ماشین جدیدی را به وجود می آورند به چنین ماشین هایی, ماشین های مرکب یا پیچیده می گویند. این ماشین ها تغییر شکل یافته ی ماشین ساده یا ترکیبی از چند ماشین ساده با یک دیگر هستند.   انواع ماشین های ساده: 1. اهرم : اهرم میله ای است که می تواند حول یک تکیه گاه دوران کند. در هر اهرم یک تکیه گاه, یک بازوی محرک و یک بازوی مقاوم وجود دارد.    بازوی محرک (LE): در یک اهرم فاصله ی نقطه اثر نیروی محرک تا تکیه گاه را بازوی محرک می گویند. بازوی مقاوم(LR): در یک اهرم فاصله ی نقطه اثر نیروی مقاوم تا تکیه گاه را بازوی مقاوم می گویند. تکیه گاه(F): نقطه ای است که اهرم حول آن دوران می کند.   اهرم بر اساس قرار گرفتن محل تکیه گاه, نیروی محرک و نیروی مقاوم به چند نوع تقسیم می شوند: الف) اهرم نوع اول در صورتیکه تکیه گاه بین نقطه اثر نیروی مقاوم و نیروی محرک باشد, اهرم از نوع اول است. اهرم نوع اول به سه حالت دیده می شود: a) حالت اول :   زمانیکه تکیه گاه درست در وسط نیروی محرک و نیروی مقاوم قرار گرفته باشد, در این صورت بازوی محرک و بازوی مقاوم با هم برابرند. در این حالت, اهرم فقط از راه تغییر جهت نیرو به ما کمک می کند. نکته: مزیت مکانیکی این اهرم همیشه یک است.   b) حالت دوم :   زمانیکه تکیه گاه بین نیروی محرک و نیروی مقاوم ولی نزدیک به نیروی مقاوم باشد, در این حالت, اهرم از راه های زیر به ما کمک می کند. 1)تغییر جهت نیرو: زیرا تکیه گاه بین نیروی محرک و مقاوم قرار دارد. 2) افزایش نیرو: زیرا بازوی محرک بزرگتر از بازوی مقاوم است. (LR>LE) نکته: مزیت مکانیکی این اهرم همواره از یک بیش تر است.   c) حالت سوم :     زمانیکه تکیه گاه بین نیروی محرک و نیروی مقاوم بوده ولی نزدیک به نیروی محرک باشد, در این حالت اهرم از راه های زیر به ما کمک می کند. 1)تغییر جهت نیرو: زیرا تکیه گاه بین نیروی محرک و مقاوم قرار است. 2) افزایش مسافت اثر نیرو: زیرا بازوی مقاوم بزرگتر از بازوی محرک است. (LR >LE) نکته: مزیت مکانیکی این اهرم همواره از یک کم تر است.   ب) اهرم نوع دوم در این نوع اهرم نیروی مقاوم بین تکیه گاه و نیروی محرک قرار دارد.(مانند فندق شکن – فرغون) این نوع اهرم فقط از راه افزایش نیرو به ما کمک می کند. زیرا در این اهرم همواره بازوی محرک بزرگتر از بازوی مقاوم است. مزیت مکانیکی این اهرم همیشه از یک بیشتر است.   نکته: در این نوع اهرم, هر چه نیروی مقاوم به تکیه گاه نزدیک تر باشد, مزیت مکانیکی بیش تر می شود.   ج) اهرم نوع سوم در این نوع اهرم نیروی محرک بین تکیه گاه و نیروی مقاوم قرار دارد. مانند (جاروی فراشی) این نوع اهرم, فقط از راه افزایش مسافت اثر نیرو به ما کمک می کند. زیرا بازوی مقاوم بزرگتر از بازوی محرک است. مزیت مکانیکی این اهرم همیشه کمتر است.   قانون اهرم ها چنانچه اهرم در حال تعادل باشد, فرمول زیر صادق است: بازوی مقاوم×نیروی مقاوم=بازوی محرک×نیروی محرک E.LE=R.LR   نکته: در صورتیکه از اصطکاک صرف نظر کنیم, مزیت مکانیکی اهرم را می توان از رابطه ی زیر نیز به دست آورد.   2. قرقره: چرخی شیاردار است که حول یک محور می چرخد.   قرقره ثابت:   مزیت مکانیکی این قرقره همواره برابر یک است و از راه تغییر جهت نیرو به ما کمک می کند. توجه: این قرقره نظیر اهرم نوع اول حالت اول است.   قرقره متحرک: این قرقره آزادانه بر روی ریسمان (طناب) جا به جا می شود. این قرقره از راه افزایش نیرو به ما کمک می کند. مزیت مکانیکی کامل این قرقره برابر 2 است. زیرا بازوی محرک (قطر چرخ) همواره دو برابر بازوی مقاوم (شعاع چرخ) است.     نکته: قرقره متحرک مانند اهرم نوع دوم است, با این تفاوت که مزیت مکانیکی اهرم (با تغییر دادن محل نیروی مقاوم) قابل تغییر است در حالیکه مزیت مکانیکی این قرقره تغییر نمی کند.(A=2)   دستگاه قرقره مرکب: برای آنکه به مزیت های مکانیکی بالاتری دست یافت می توان دو یا چند قرقره ثابت و متحرک را با هم ترکیب کرد و یک قرقره مرکب به وجود آورد. در این حالت قرقره ها را به شکل های مختلفی با یکدیگر ترکیب می کنیم.   الف) در یک روش, برای بستن تمام قرقره ها فقط از یک رشته نخ استفاده می شود. در این حالت برای به دست آوردن مزیت مکانیکی کامل دستگاه به دو صورت عمل می کنیم: 1- تعداد نخ های متصل به قرقره متحرک را می شمریم. 2- نیروی کشش نخ (T) را مشخص کرده و مزیت مکانیکی کامل را به دست می آوریم.            ب) قرقره های ارشميدس: برای اتصال این قرقره ها به یکدیگر از چند رشته نخ استفاده می شود. برای بدست آوردن مزیت مکانیکی کامل این دستگاه از دو راه استفاده می شود: الف) نیروی کشش نخ (T) را مشخص می کنیم.       توجه: وجود قرقره ثابت در مزیت مکانیکی کامل دستگاه هیچ تاثیری ندارد ولی چون کشیدن ریسمان به سمت پایین آسانتر از کشیدن به سمت بالاست گاهی برای آسانتر شدن کار از قرقره ثابت استفاده می شود.   2- برای به دست آوردن مزیت مکانیکی اين قرقره ها را می توان از فرمول نیز استفاده کرد. (n= تعداد قرقره متحرک است.) مثال: در دستگاه بالا از دو قرقره متحرک استفاده شده است پس   ج) ممکن است قرقره به صورت زیر به یکدیگر وصل شده باشند, در این صورت برای به دست آوردن مزیت مکانیکی کامل. 1) از راه کشش نخ استفاده می کنیم.     2) از فرمول زیر به دست آوریم(A=2n-1) (n= تعداد قرقره های ثابت و متحرک است.)  مثال: در دستگاه بالا از 3 قرقره استفاده کردیم:   تذکر: قرقره ها را به شکل های گوناگون می توان با هم ترکیب کرد. در هر مورد برای به دست آوردن مزیت مکانیکی کامل می توان از نیروی کشش نخ استفاده کنیم.   3- چرخ محور: چرخ و محور چرخی است که به مرکز آن یک میله وصل شده است. با چرخاندن چرخ, میله نیز می چرخد. فرمان اتومبیل-آچار پیچ گوشتی- کلید درب-مداد تراش رومیزی-چرخ چاه-چرخ گوشت دستی نمونه هایی از ماشین چرخ و محور هستند. F60   نکته1: در چرخ و محور اگر نیروی محرک را به چرخ و نیروی مقاوم را به محور وارد کنند در این حالت چرخ و محور از طریق افزایش نیرو به ما کمک می کند.. زیرا بازوی محرک (شعاع چرخ=rE) از بازوی مقاوم (شعاع محور=rR) بزرگتر خواهد شد و مزیت مکانیکی آن از یک بیش تر خواهد شد.   در چرخ و محور بین شعاع (قطر) چرخ و شعاع (قطر) محور و نیروهایی که به چرخ و محور وارد می شود. رابطه ی زیر برقرار است. (در صورت صرف نظر از اصطکاک)   توجه: چون چرخ و محور به هم چسبیده اند تعداد دورهایی که چرخ و محور در یک مدت می چرخند باید مساوی باشند. اگر چرخ یک دور بچرخد نقطه اثر نیروی محرک به اندازه محیط چرخ (rEا2R) جابه جا        می شود ونقطه اثر نیروی مقاوم به اندازه محیط محور (rRתا2) جابه جا خواهد شد.   نکته 2: در چرخ و محور اگر نیروی مقاوم به چرخ و نیروی محرک به محور وارد شود, چرخ و محور از طریق افزایش مسافت اثر نیرو کمک می کند زیرا بازوی مقاوم (rR) از بازوی محرک (rE) بزرگتر خواهد شد و مزیت مکانیکی آن از یک کم تر خواهد شد.   نكته3: تغییر جهت نیرو در این ماشین بستگی به نحوه بستن ریسمان ها به چرخ و محور دارد.   چرخ و محور نیز نوعی اهرم است. با این تفاوت که : 1) چرخ و محور نه در دامنه ی حرکت محدودیت دارد و نه در مزیت مکانیکی 2) اهرم پس از مدتی چرخش به دور تکیه گاه متوقف می شود ولی در چرخ و محور خیر.   4- سطح شیب دار هر سطحی که با سطح افق زاویه ای کوچکتر از 90 درجه بسازد, سطح شیب دار است. به وسیله سطح شیب دار می توانیم یک جسم سنگین را با وارد کردن نیرویی کوچک تر از وزن آن, به داخل کامیون منتقل می کنیم. در این صورت به کمک یک نیروی کم اما در مسافتی طولانی, جسمی را به سمت بالا حرکت می دهیم. اگر بخواهیم جسمی را در راستای قائم بلند کنیم باید نیرویی برابر وزن جسم (mg) به آن وارد کنیم ولی با استفاده از سطح شیب دار و با چشم پوشی از اصطکاک نیرویی کم تر از نیروی وزن (mgsinΘ) لازم است تا جسم را از سطح زمین بالا برد. نکته: هر چه زاویه سطح شیب دار کوچک تر باشد نیروی کم تری برای بالابردن جسم لازم است در نتیجه طول سطح شیب دار نسبت به ارتفاع آن بیش تر خواهد شد.    نکته1: در سطح شیب دار, طول سطح (L) جابه جایی نیروی محرک (dE) و ارتفاع سطح (h) جابه جایی نیروی مقاوم (dR) خواهد بود. هرگاه نیروی محرک به اندازه طول سطح شیب دار (L) جابه جا شود, نیروی مقاوم به اندازه ارتفاع سطح شیب دار (h) جابه جا خواهد شد. dE = L    ,     dR = h   نکته2: برای آنکه بخواهیم سینوس یک زاویه را به دست آوریم از راه زیر استفاده می کنیم.   مزیت مکانیکی کامل سطح شیب دار از رابطه زیر به دست می آید.   با توجه به رابطه ی h=Lsin Θ داریم:   توجه: چون در عمل همیشه مقداری نیروی اصطکاک وجود دارد. بنابر این برای بالابردن جسم بر روی سطح شیب دار نیرویی بیش تر از mgsin Θ لازم است و مقدار نیروی محرک واقعی از رابطه ی زیر به دست می آید. واقعي E = mgSinΘ + f(نيروي اصطكاك)   گوه: یک سطح شیب دار متحرک است و معمولا از دو سطح شیب دار ساخته شده است. نوک تبر, قیچی, چاقو و هر وسیله تیز و برنده گوه است. یکی از کاربردهای گوه شکاف دادن تنه درختان است. وقتی با پتک به گوه نیرو وارد می شود, گوه به جلو رانده می شود در نتیجه از طریق سطوح جانبی گوه, نیروی بزرگتری به هر طرف شکاف وارد می شود.   نکته1: طول گوه جابه جایی نیروی محرک و ضخامت گوه, جابه جایی نیروی مقاوم است. نکته2: طول گوه را با L ضخامت گوه را با t نشان می دهند. dE = L  ,  dR = t   مزیت مکانیکی کامل گوه:   نکته: هر چه طول گوه نسبت به ضخامت گوه بیش تر باشد, یعنی گوه نازک تر باشد, مزیت مکانیکی کامل آن بیش تر است.


برچسب‌ها: فیزیک
+ نوشته شده در  یکشنبه ۱۴ اسفند ۱۳۹۰ساعت 19:34  توسط سيد مصطفي محمدزاده   |